关于纱线的翻译
attached to the tension sensor and another end is fixed on the
eyelet. The yarn segment between the guide-eye and eyelet
forms a ballooning curve while the eyelet is rotating and this
segment is defined as the yarn-length in the balloon. The
yarn-length in the balloon increases while the arm, on which
the tension sensor is fixed, moves downward (Figure 2). When
the arm goes to the lower limit, the yarn-length between
guide-eye and eyelet reaches the “maximum” value. The
yarn-length in balloon decreases while the arm moves upward
until it reaches the upper limit. The arm speed is set at 200
mm/min. When the eyelet starts rotating, the yarn segment
between the guide-eye and rotating eyelet will form a
ballooning curve and generate tension in the ballooning
yarn. The tension signal at the guide-eye is digitised by the
computer data acquisition system.
Materials
We have used three different types of yarns with various
counts and hairiness for the experiments. Therefore, we can
examine the effects of yarn thickness and hairiness on the
yarn tension. Table 1 gives the details of the yarn characteristics.
For the hairiness results listed in Table 1, we tested the
yarns at a speed of 400 m/min for a minimum of 3.5 minutes
(or 1,400 m of yarn length) using the Uster Tester 4.
For yarn tension measurement, we ‘spun’ the yarns at
different ‘twisting’ speeds on the ballooning rig, with the
balloon height varying from 120 mm to 360 mm. We
measured the yarn rotating speed with a digital tachometer
during the tests, and used a digital camera with video
capability to capture the balloon shape.
Results and Discussion
Effects of Yarn-length in Balloon on Balloon Shape
Figure 3 shows the effect of yarn-length in balloon, for the
70.1 tex two-fold wool yarn, on the balloon shapes at a
balloon height of 300 mm and a rotating speed of 4200 rpm.
When the ratio of yarn-length in balloon to balloon-height
(Rl/h) is 1.03, 1.10, 1.20, 1.35 and 1.65, the balloon has 1, 2,
3, 4 and 5 loops respectively.
When the yarn-length in balloon is close to the “minimum”
value of (where h is the balloon height and a is the
ring radius), the balloon is almost in the axial plane (a plane
that contains ballooning yarn and passes the centre line of
the balloon rig), as shown in Figure 3(a). When the yarnlength
in balloon is increased, the axial plane will twist some
radians due to the air drag on the ballooning yarn and yarn
hairs. For ease of statement, we call the twist angle of the
ballooning yarn at the rotating eyelet relative to the guideeye
as the offset-angle [radian]. Figures 3(a)-(e) correspond
to an offset-angle of around 0.4π, 1.5π, 2.5π, 3.3π and 4.4π,
respectively. As the yarn-length in balloon is continuously
increased, the offset-angle increases further, and then the
yarn in the balloon will usually form knots and break at the
rotating speed under consideration.
最佳答案:
张力传感器连接到另一端上,并固定
鸡眼。之间的指南,眼睛和网眼纱段
形成了一个气球曲线,而小孔,这是旋转
部分被定义为纱线长度在气球。该
纱线长度在气球上升,而手臂,上
张力传感器是固定的,向下移动(图2)。何时
手臂去下限,纱线长度之间
引导眼和鸡眼达到“最大”的价值。该
纱线长度的减小,在气球的手臂向上移动
直到达到上限。手臂速度设定为200
毫米/分钟。当小孔开始旋转,纱线段
指导之间的眼和旋转会形成一个小孔
曲线和气球膨胀产生的紧张局势
纱。在指导眼紧张的信号被数字化的
计算机数据采集系统。
物料
我们使用三种不同类型的各种纱线
计数和毛羽的试验。因此,我们可以
审议关于对纱线毛羽的影响及厚度
纱线张力。表1给出了纱线特性的细节。
对于毛羽表1所列的结果,我们测试了
纱线在400米/分的速度最低的3.5分钟
(或纱线长度1400米)利用乌斯特仪4。
对于纱线张力测量,我们'纺'在纱线
不同的'扭曲'的速度在不断膨胀的钻机,与
气球不同高度从120毫米到360毫米。我们
测量纱线旋转速度与数字转速表
在测试过程中,使用视频和数码相机
捕捉能力,气球的形状。
结果与讨论
在气球上的影响气球形状的纱线长度
图3显示在气球的纱线长度的作用,因为
70.1 tex的2倍,羊毛纱的气球,在一个形状
气球高度为300毫米,4200转的转速。
当纱线长度的比例在气球气球的高度
(汤顿/小时)为1.03,1.10,1.20,1.35和1.65,气球有1,2,
三,分别为4和5环。
当纱线在气球长度接近“最低”
值(其中H是高度,一个气球是
环半径),气球是(几乎在一个平面轴面
包含气球纱和线传递中心
气球钻机),如图3(a)所示。当yarnlength
在气球的增加,将扭转一些轴面
由于弧度气球上的空气阻力纱线及纱线
毛发。为了便于说明,我们称之为捻角
乘坐热气球在旋转网眼纱相对guideeye
为抵消角[弧度]。图3(1) - (五)对应
到抵消角左右0.4π,1.5π,2.5π,3.3π和4.4π,
分别。由于纱线在气球长度不断
增加,抵消角度进一步提高,然后
在气球纱通常会在海里,打破
正在审议的旋转速度。
查看更多相关问题 >>